Advances in Statistical Methods in Imaging Genetics

Thomas Nichols, PhD
Departments of Statistics & Warwick Manufacturing Group
University of Warwick

International Imaging Genetics Conference
17 January 2011
Outline

• Optimal Imaging Phenotype
• Validating VBM Cluster Size Inference
• SNP Combining Methods
• Invalidating Heritability in Twin Studies
• Sparse Multivariate Association
Optimal Imaging Phenotype

• Desperate need for power
• fMRI imaging genetics
 – Only few regions have BOLD signal
 – Can’t ROI’s help? (Reduce multiple testing)
Power: 1 Test

- **Power**
 - The probability of rejecting H_0 when H_A is true
- Specify the false positive rate, α
 - Sets the cut-off
- Specify effect magnitude (Δ) and variance (σ^2)
 - Sets the alternative, with mean Δ/σ
Power: 100,000 Tests?

• Avoid Multiple Testing Problem if possible
 – Typically study will use well-characterized paradigm
 – Expected region of response should be known
• But…
 – Variation in functional and structural anatomy
 – “Perfect” region never known
• Should we use focal ROI?
• Voxel-wise search in neighborhood?
• Over whole brain anyway?
Qualitative Power Exploration

• Simplified power setting
 – Not voxel-wise; instead largish (>1000 voxel) VOIs
 – Large VOIs: Assuming $\sigma_{\text{within}} << \sigma_{\text{between}}$
 • Hence different sized VOI’s will have similar variance
 – Large VOIs: Assuming independence between VOIs

• Consider impact of many vs. fewer VOI’s
 – Many VOIs
 • Better follows anatomy, possible shape of signal
 • Worse multiple testing correction
 – Fewer VOIs
 • Will dilute localized signal
 • Fewer tests to correct for
AAL & Derived ROI Atlases

Atlas 0 (AAL)
k = 116 regions
\(\alpha_{FWE} = 0.00043 \)
(surrogate for correlated voxel-wise search)

Atlas 1 (AAL symmetric)
k = 58 regions
\(\alpha_{FWE} = 0.00086 \)

Atlas 2
k = 28 regions
\(\alpha_{FWE} = 0.00179 \)

Atlas 3
k = 17 regions
\(\alpha_{FWE} = 0.00294 \)

Atlas 4 (Lobar AAL)
k = 6 regions
\(\alpha_{FWE} = 0.00833 \)

Atlas 5 (whole GM)
k = 1 region
\(\alpha_{FWE} = 0.05000 \)
L Amygdala

Atlas 0 (AAL)
k = 116 regions
$\alpha_{FWE} = 0.00043$
Signal
 # VOIs = 1
 Strength = 100%

Atlas 3
k = 17 regions
$\alpha_{FWE} = 0.00294$
Signal
 # VOIs = 1
 Strength = 4.9%

Atlas 1 (AAL symmetric)
k = 58 regions
$\alpha_{FWE} = 0.00086$
Signal
 # VOIs = 1
 Strength = 47%

Atlas 4 (Lobar AAL)
k = 6 regions
$\alpha_{FWE} = 0.00833$
Signal
 # VOIs = 1
 Strength = 0.6%

Atlas 2
k = 28 regions
$\alpha_{FWE} = 0.00179$
Signal
 # VOIs = 1
 Strength = 47%

Atlas 5 (whole GM)
k = 1 region
$\alpha_{FWE} = 0.05000$
Signal
 # VOIs = 1
 Strength 0.1%
Power: L Amygdala, True ROI

- True ROI best (of course)
- Rich ROI atlas (k=116) beats coarser atlases
 - Dilution more punishing than greater multiple testing
Power: L Amygdala, Shifted ROI

- True ROI best
- Wrong (unshifted) ROI next
- Rich ROI atlas still beats coarser atlases
Power: $\frac{1}{2}$ of Mid-Cingulate

- Whole Mid-Cing ROI best
- Again, huge (k=116) atlas next best
- But we’ve assumed RFX
 - No precision gain for large ROI’s, as shrinking σ_{WiN} is no help
Power: $\frac{1}{2}$ of Mid-Cingulate: FFX

- Whole Mid-Cing ROI best
- Now Symmetric AAL atlas (k=58) best!
 - If σ_{BTW} small, precision increase with large ROIs has impact
Power Exploration Conclusions

- Compared Range of Scales
 - Whole Brain, Lobar (k=6),..., AAL (k=116)

- Focal structures – Focal ROI’s best
- More extended signals, with heterogeneity
 - Rich atlas best
 - Dilution of signal worse than Bonferroni

- But whole-brain always less powerful than reduced volume
 - Suggests voxel-wise result preferred, constrained coarsely
Outline

• Optimal Imaging Phenotype
• Validating VBM Cluster Size Inference
• SNP Combining Methods
• Invalidating Heritability in Twin Studies
• Sparse Multivariate Association
Validating SPM Inference

• “False positives in imaging genetics”
 – Showed SPM valid—conservative even—for imaging genetic data (i.e. huge n)
 – But only considered voxel-wise inference
Inference On Images: Voxel-wise vs. Cluster-wise

- **Voxel-wise**
 - Reject Ho, point-by-point, by statistic magnitude

- **Cluster-wise**
 - Define contiguous blobs with arbitrary threshold u_{clus}
 - Reject Ho for each cluster larger than k_α
Cluster Inference & Stationarity

• Cluster-wise preferred over voxel-wise
 – Generally more sensitive
 – Spatially-extended signals typical

• Problem w/ VBM
 – Standard cluster methods assume stationarity, constant smoothness
 – Assuming stationarity, false positive clusters will be found in extra-smooth regions
 – VBM noise very non-stationary

• Nonstationary cluster inference
 – Must un-warp nonstationarity
 – Reported but not implemented
 • Hayasaka et al, NeuroImage 22:676–687, 2004
 – Now available as SPM toolbox
 • http://fmri.wfubmc.edu/cms/software#NS
Validating VBM Cluster Size Inference

• Data
 – 181 MCI subjects from ADNI
 – T1 MRI’s, optimized VBM w/ SPM5
 – 700 “Null” SNPs
 • MAF > 5%, HWE OK at 0.05/700
 • Evenly spaced from chromosome 3
 • Ch3? A chromosome w/ no candidate genes
 – APOE, PSEN1, PSEN2 and SORL1 specifically

• Analysis
 – Additive model for single SNP
 • If fewer than 10 rare homozygotes, merge with heterozygotes
 • Plus Age, Gender
 – 700 SPM results – count % w/ any false positives
 – Also, 10 permutations
 • Just in case any true association
Null Rejection Rates: T-test

- Voxel-wise results match M-L (slightly conservative)
- 6mm smoothing way off
- 12 mm smoothing only OK for 0.001 cluster-forming threshold!

<table>
<thead>
<tr>
<th></th>
<th>6mm smoothing</th>
<th>Rejection Rates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u_c</td>
<td>Observed(%)</td>
<td>Permutated(%)1</td>
<td>Observed(%)</td>
</tr>
<tr>
<td>t-tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster-size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stationary</td>
<td>0.001</td>
<td>10.7</td>
<td>9.2±1.1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>23.3</td>
<td>24.8±2.2</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>47.4</td>
<td>46.7±1.8</td>
<td>20.7</td>
</tr>
<tr>
<td>non-stationary</td>
<td>0.001</td>
<td>10.0</td>
<td>8.1±1.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>19.9</td>
<td>21.2±1.6</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>45.0</td>
<td>43.2±2.2</td>
<td>20.1</td>
</tr>
<tr>
<td>voxel-wise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWE</td>
<td>-</td>
<td>3.4</td>
<td>2.7±0.6</td>
<td>3.0</td>
</tr>
<tr>
<td>FDR</td>
<td>-</td>
<td>3.3</td>
<td>2.2±0.6</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Null Rejection Rates: F-test

- Similar pattern
 - Voxel-wise OK
 - Cluster-wise only OK for 12mm, 0.001!

<table>
<thead>
<tr>
<th>f-tests</th>
<th>u_c</th>
<th>6mm smoothing</th>
<th>12mm smoothing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed(%)</td>
<td>Permtued(%)1</td>
</tr>
<tr>
<td>stationary</td>
<td>0.001</td>
<td>13.0</td>
<td>10.3±1.6</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>30.9</td>
<td>29.6±2.1</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>60.4</td>
<td>60.6±1.7</td>
</tr>
<tr>
<td>non-stationary</td>
<td>0.001</td>
<td>11.6</td>
<td>9.1±1.2</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>25.6</td>
<td>25.1±2.1</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>57.6</td>
<td>55.6±2.0</td>
</tr>
<tr>
<td>voxel-wise</td>
<td>FWE</td>
<td>-</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>FDR</td>
<td>-</td>
<td>2.9</td>
</tr>
</tbody>
</table>
(In)Validating VBM Cluster Size Inference

• Non-stationary cluster-size test OK in small samples!
 – Result of Hayasaka et al, in permutation and simulation

• What’s happening here?

• Check with simulations
 – Simulate same N=181
 – Stationary & non-stationary
 • FWHM 4,6,9 & 8,12,18
 – Count false positives out of 700 analyses
Null Rejection Rates: T-test Simulated Data

- Accurate to cluster-forming 0.01
 - Matching Hayasaka et al.

<table>
<thead>
<tr>
<th>t-tests</th>
<th>Rejection Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6mm smoothing</td>
</tr>
<tr>
<td></td>
<td>u_c</td>
</tr>
<tr>
<td>stationary</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>non-stationary</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>voxel-wise</td>
<td></td>
</tr>
<tr>
<td>FWE</td>
<td>-</td>
</tr>
<tr>
<td>FDR</td>
<td>-</td>
</tr>
</tbody>
</table>
Real data vs. Simulated Data
Why the mis-match?

• Simulated non-stationary data
 – Gaussian assumptions true
 – Form of non-stationary simple

• Real VBM data
 – Gaussianity possibly violated
 • But Central Limit Theorem should help
 – Complex pattern of nonstationarity
 • Theory depends on existence of a warp to stationarity

• More reason to use permutation!
Valid VBM Cluster-Size Inference

• Must account for nonstationarity
• For smooth data, cluster-forming threshold 0.001
 – RFT-based test OK
• Other-wise, permutation
 – Permutation valid under nonstationarity!
 • But not uniformly sensitive
 – Non-stationarity permutation test
 • Not currently implemented
 – SnPM & randomise will get it
Outline

- Optimal Imaging Phenotype
- Validating VBM Cluster Size Inference
- SNP Combining Methods
- Invalidating Heritability in Twin Studies
- Sparse Multivariate Association
Genetics Background

• SNPs vs. genes
 – Each gene often has several variants
 – 1 or more (but not many) SNPs typically needed to identify a gene
 – SNPs may not lie directly on coding portion of gene
 • Due to linkage disequilibrium (correlation), close is good enough
 • Non-coding, regulatory region may be causal
Modelling Multiple SNPs

• Model each SNP separately
 – But have yet another multiple testing problem!

• Haplotype
 – A ‘multivariate’ approach
 – Fit separate effect for each combination of SNPs

Haplotypes vs. Combined SNPs

• Statistical Geneticists Conventional Wisdom:
 – Haplotypes not worth the DF
 – Separate modelling of SNPs better

• Simulation study
 – Chapman et al., Human Heredity 2003; 56:18–31
 – Compared association power for several type 1 diabetes candidate genes
 – Induce effect at a single causal SNP
 – Vary degrees of freedom (DF) of model
 • Lowest DF: 1 covariate per SNP
 • Highest DF: All possible haplotypes
Haplotypes vs. Combined SNPs

• When few SNPs available...
 – Power doesn’t increase with haplotypes
Haplotypes vs. Combined SNPs

- When many SNPs available...
 - Simplest model almost always best
 - Effect is lost among a sea of DF

See also:
How to Combine Separate SNP Results?

- Tippett’s Method (1931)
 - Minimum P-value
 - Intuitive, corresponds to picking best result

- Fisher’s Method (1950)
 - Based on product of P-values
 - Equivalently, sum log P: $-2 \times \sum \log P_i \sim \chi^2_{2n}$

- Stouffer’s Method (1949)
 - Scaled Average Z, $\text{AvgZ} \times \sqrt{n} \sim N(0,1)$
 - If only have P, convert with $Z = \Phi(1-P)$

 - Max P-Value
Combining Methods: Interpretations

• Tippett’s Method – Min P
 – Can identify individual significant SNPs
 – Relatively better for rare/sparse signals

• Fisher’s Method – Prod P
 – Relatively better for diffuse/distributed signals
 – Detects regardless of inconsistent signs of effects

• Stouffer’s Method – Avg Z
 – Different signs of effects cancel

• Conjunctions – Max P
 – Relatively sensitive to consistent significance
Combining Methods: Other Variations

- **Weighted Stouffer’s Method**
 - $\sum w_i Z_i$ such that $\sum w_i^2 = 1$
 - Any weights; typically $w_i \propto \sqrt{n_i}$

- **Truncated Product Method**
 - Product of P-values smaller than limit λ

- **Rank Truncated Product Method**
 - Product of k smallest P-values

- **Gamma Method**
 - Generalization of Fisher’s & Stouffer’s
 - Tuneable between small-but-consistent and large-but-rare signals
Combining Inference

• Inference on combining method
 – If combined P’s independent, can obtain parametric P-values for combined stat
 • e.g. \(-2 \times \sum_i \log P_i \sim \chi^2_{2n}\) for Fisher’s

• SNP’s not independent!
 – Need to use permutation, resampling methods
 – Under null, can permute SNP covariate
 – Must permute every SNP identically
 – Build permutation distribution of combining stat

• Implementation
 – randomise w/ fslmaths (FSL 4.1)
Permutation Inference for Combining Statistics

- Uncorrected P-values: C compared to permutation distribution at each voxel
- FWE Corrected P-values: C compared maximum distribution of C (over space)
- Dependence: Any correlations between SNPs accounted for
Combining Demonstration

• VBM data
 – 278 subjects, Major Depressive Disorder & Healthy Controls
• Effect of interest
 – Differences in GM-gene associations between the two groups
 – Additive or recessive effect tested with F stat
• Genes of interest, from WNT pathway
 – DVL2 (3 SNPs)
 – WNT3a (7 SNPs)
 – KRM1 (12 SNPs)
 – ZEB2 (25 SNPs)
• Combining over SNPs
 – Fishers, Stouffers, Max F & Min F
T images for 12 SNPs

Some T-images for interaction
Impossible to discern joint evidence by eye
Fisher’s & Stouffer’s best for weak but common effects.
 - No F larger than 5.
Max F best for rare, very strong effects.
- Very large F-value for 1st SNP.
Illustration with ZEB2 (3)

Fishers, Stouffer’s & Max F similar for common, strong effects.
Illustration with ZEB2 (4)

Min F only best when no weak effects
- No large effects are required
Summary

• None attain FWE 0.05
 – ZEB2 close

• If any signal present, Max F most sensitive
Conclusions

• Imaging Genetics & Multiple SNPs
 – Except for well-characterised SNPs, generally can’t pick single SNP in advance
 – Must use principled method for combining

• Combining Methods
 – Right method depends on expected signal
 • Tippett’s: Best for rare, but intense effects
 • Fisher’s: Good for common, less intense effects
 – Expect point-mutations but linkage disequilibrium means SNPs may be correlated
Outline

• Optimal Imaging Phenotype
• Validating VBM Cluster Size Inference
• SNP Combining Methods
• Invalidating Heritability in Twin Studies
• Sparse Multivariate Association
Heritability from Twin Data

• Correlation between phenotype data of twins hold information about genetic heritability of traits
 – No correlation → No shared genetic variance
 – Correlation → Shared genetic and/or environmental variance

• Need both types of twins
 – Modelling both
 • monozygotic (MZ, identical) twins’ correlations, and
 • dizygotic (DZ, fraternal) twins’ correlation
 allows dissociation of genetic and environmental contributions

• Simple Falconer’s method uses arithmetic of correlation coefficients
 – Used extensively in imaging
 • E.g. Wright et al, NeuroImage 17, 256–271 (2002), 10 MZ, 10 DZ

• Better models use ‘SEM’
 – But here SEM is nothing more than window-dressing
 – Can work with components-of-variance model instead
\[\text{Cov}(Y_1, Y_2) = \]

\[
\begin{bmatrix}
A + D + C + E & A + D + C \\
A + D + C & A + D + C + E
\end{bmatrix}
\]

\[
\begin{bmatrix}
A + D + C + E & \frac{1}{2}A + \frac{1}{4}D + C \\
\frac{1}{2}A + \frac{1}{4}D + C & A + D + C + E
\end{bmatrix}
\]

\[
\begin{bmatrix}
A + D + C + E & A + D \\
A + D & A + D + C + E
\end{bmatrix}
\]

\[
\begin{bmatrix}
A + D + C + E & \frac{1}{2}A + \frac{1}{4}D \\
\frac{1}{2}A + \frac{1}{4}D & A + D + C + E
\end{bmatrix}
\]

- “Narrow-sense” heritability
 - \(h^2 = A / (A + D + C + E) \)

- If all four types of twins are available, can estimate all four components
- If not, only really can estimate 3 parameters

\(A \) – Additive genetic variation
\(D \) – Dominant genetic variation
\(C \) – Common environmental variation
\(E \) – Random environmental / measurement variation
\[
\text{Cov}(Y_1, Y_2) = \begin{cases}
\text{From here on, assume raised together...}
\end{cases}
\]

\[
\begin{align*}
\text{MZ Twins} & \quad \text{No-Dominance model} & \quad \text{DZ Twins} \\
\begin{bmatrix}
A + C + E & A + C \\
A + C & A + C + E
\end{bmatrix} & \quad \begin{bmatrix}
A + C + E & \frac{1}{2} A + C \\
\frac{1}{2} A + C & A + C + E
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{MZ Twins} & \quad \text{No-common-environment model} & \quad \text{DZ Twins} \\
\begin{bmatrix}
A + D + E & A + D \\
A + D & A + D + E
\end{bmatrix} & \quad \begin{bmatrix}
A + D + E & \frac{1}{2} A + \frac{1}{4} D \\
\frac{1}{2} A + \frac{1}{4} D & A + D + E
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{MZ Twins} & \quad \text{Additive only, no-env model} & \quad \text{DZ Twins} \\
\begin{bmatrix}
A + E & A \\
A & A + E
\end{bmatrix} & \quad \begin{bmatrix}
A + E & \frac{1}{2} A \\
\frac{1}{2} A & A + E
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{MZ Twins} & \quad \text{No-genetic-effect model} & \quad \text{DZ Twins} \\
\begin{bmatrix}
C + E & C \\
C & C + E
\end{bmatrix} & \quad \begin{bmatrix}
C + E & C \\
C & C + E
\end{bmatrix}
\end{align*}
\]
Simulation Goals

• Use SPM ReML / Covariance modelling framework
 – i.e. $\text{Cov}(Y) = \sum \lambda_i Q_i$
 – One λ for each of A, C & E parameter
 – For now, univariate simulation (same code for mass-univariate)

• Can we accurately pick the right model?
 – Simulate 4 different models as truth
 – For each given simulation, fit all 4 models, pick one with best LE

• Bias?
 – Not in the world of linear models, can’t assume unbiased

• Variance
 – Is our estimator better than dumb algebraic “Falconer’s estimate”
 – $h^2 = 2 (r_{MZ} - r_{DZ})$
Models Considered in Initial Simulation

<table>
<thead>
<tr>
<th>MZ Twins</th>
<th>DZ Twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Null” - No correlation model</td>
<td></td>
</tr>
<tr>
<td>$\begin{bmatrix} E & 0 \ 0 & E \end{bmatrix}$</td>
<td></td>
</tr>
<tr>
<td>“A only” Additive only, no-env model</td>
<td></td>
</tr>
<tr>
<td>$\begin{bmatrix} A + E & A \ A & A + E \end{bmatrix}$</td>
<td></td>
</tr>
<tr>
<td>“C only” - No-genetic-effect model</td>
<td></td>
</tr>
<tr>
<td>$\begin{bmatrix} C + E & C \ C & C + E \end{bmatrix}$</td>
<td></td>
</tr>
<tr>
<td>“A&C” - No-Dominance model</td>
<td></td>
</tr>
<tr>
<td>$\begin{bmatrix} A + C + E & A + C \ A + C & A + C + E \end{bmatrix}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MZ Twins</th>
<th>DZ Twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A&C” - No-Dominance model</td>
<td></td>
</tr>
<tr>
<td>$\begin{bmatrix} A + C + E & \frac{1}{2} A + C \ \frac{1}{2} A + C & A + C + E \end{bmatrix}$</td>
<td></td>
</tr>
</tbody>
</table>
Null
(no corr.)

A only
(no shared env.)

C only
(no heritability)

A & C
(shared genes & env.)
Bias Comparison: ReML h^2 (blue) vs. Falconer’s h^2 (red)

10 MZ + 10 DZ twins

30 MZ + 30 DZ twins

50 MZ + 50 DZ twins

“Null” (no corr.)
“A only” (no shared env.)
“C only” (no heritability)
“A & C” (shared genes & env.)
Stdev. Comparison: ReML h^2 (blue) vs. Falconer’s h^2 (red)

- 10 MZ + 10 DZ twins
- 30 MZ + 30 DZ twins
- 50 MZ + 50 DZ twins

“Null” (no corr.)
“A only” (no shared env.)
“C only” (no heritability)
“A & C” (shared genes & env.)
MSE Comparison: ReML h^2 (blue) vs. Falconer’s h^2 (red)

- **50 MZ + 50 DZ twins**
 - Null
 - A only
 - C only
 - A & C

- **30 MZ + 30 DZ twins**
 - Null
 - A only
 - C only
 - A & C

- **10 MZ + 10 DZ twins**
 - Null
 - A only
 - C only
 - A & C

“Null” (no corr.) “A only” (no shared env.) “C only” (no heritability) “A & C” (shared genes & env.)
Simulation Results

• Falconer’s method
 – Anticonservative
• REML
 – Much more accurate
• Bad news
 – Very hard to pick right model
 – Need lots of data
• Model Selection Difficulties
 – Known in the literature
 • Almost impossible to detect non-zero C
 – Recommended to always use A+C+E model
Outline

• Optimal Imaging Phenotype
• Validating VBM Cluster Size Inference
• SNP Combining Methods
• Invalidating Heritability in Twin Studies
• Sparse Multivariate Association
Conclusions

• Voxel-wise (or many smaller vs. fewer bigger ROIs) seem best
 – But of course with smallest mask possible

• Multiple SNPs often inescapable – don’t muddle through, combine!

• Statistical genetics has a rich literature – check there before grabbing a tool (or developing a new one.
Possible Mass-Univariate Analyses

- Full cross analysis
 - Massive multiple testing problem!

- Candidate SNP
 - Full image result
 - Must have right SNP

- Voxel/Region QTL
 - Whole genome association
 - Must have right ROI
True Joint Imaging-Genetics Modelling

- Ideally want to fit all SNPs, all voxels/ROIs
- Need multivariate method
 - To eliminate avoid multiple testing
- Need sparsity
 - To implicitly do testing

Joint work with Maria Vounou, Giovanni Montana, Imperial College
Multivariate Regression

Image Data \[Y \]
\[n \times q \]

SNP Data \[X \]
\[n \times p \]

Regression Coefficients \[C \]
\[p \times q \]

Error \[E \]
\[n \times q \]

• Impossible to fit
 – unless \(n \) exceeds \(p \) or \(q \)
Multivariate Reduced Rank Regression

\[Y = X \begin{pmatrix} A & B \end{pmatrix} + E \]

- Feasible to estimate
 - But not easy to interpret
Multivariate Sparse Reduced Rank Regression

- Mostly-zero coefficients
 - Combine model-fitting and selection

\[Y = X + A B + E \]

- Image Data
- SNP Data
- Sparse Imaging Coefficients
- Error
Reduced Rank Regression Analysis (1)

- **Standard RRR**
 - \(X \): SNP data \((n_{\text{subj}} \times n_{\text{SNP}})\)
 - \(Y \): Imaging data \((n_{\text{subj}} \times n_{\text{voxel}})\)
 - For given rank \(r \), find \(B \times A \) that approximates true \(C \)

- **Sparse RRR**
 - Iteratively find vectors \(a \) & \(b \) to minimize
 \[
 \text{tr}\{ (Y - X ba) (Y - X ba)' \} + \lambda_a ||a'||_1 + \lambda_b ||b||_1
 \]

- **What penalty?**
 - \(L_1 \) “Lasso”
 - Forces some elements exactly zero
Evaluating Sparse RRR for SNP-MRI Association

• Structural MRI data
 – ADNI T1 images through SPM5 VBM pipeline
 – ~100 AD subjects
 – Reduce dimensionality with ROI template
 • 10 coarse ROIs
 – Occipital, Parietal, Temporal, Frontal, Insular, Cingulate, Thalamus, ...
 • Estimate covariance matrix V after adjusting for age & gender

• Evaluate with realistic genetic population w/ FREGENE
 – Simulates sequence-level data in large population
 – Provides 10K individuals, 20Mb chromosome (~180K SNPs)
FREGENE simulation example
World population using

Why try so hard? Why not just rand\{0,1,2\}^{500,000}?

- Linkage disequilibrium (LD)
 - SNPs not independent
 - Highly structured, heterogeneous dependence
- Population sub-structure
 - Ethnic differences & migration patterns induce systematic variation
- Want confidence that our multivariate method performs well with such structure
Evaluating Sparse RRR for SNP-MRI Association

• Simulated SNP data
 – Use 300 SNPs from 5 Kb region
 – From population of 10,000, repeatedly sample 2,000 cohorts
 – Selected 4 *causative* SNPs
 • Will be used to induce phenotypic effect
 • But then *dropped* from set, leaving 296 SNPs
 • Represents realistic setting, where causative SNP is not seen, but effect captured through local LD

• Simulated MRI data
 – Simulate ROI data with covariance V
 – Add genetic effect to Frontal and Temporal ROIs with causative SNPs

• “True positive” with missing causative SNP
 – Declare true positive if LD coefficient close enough
ROC Components – SNP Components

For $r=1$, same or better than Mass Univariate
For $r>1$, always better
ROC Performance – SNP Components: More SNPs

Generalization to 10’s of 1,000’s of SNPs… always out-performs Mass Univariate
ROC Performance – Imaging Components

For equal weighting, not ROI as great
Unequal weighting somewhat better
Future Work
Whole Brain / Whole Genome Association

• Computationally hard, not impossible
 – Weeks, not months of computing
 – Various tricks available
 • Parametric – Use fast, approximate method to screen out large P’s
 • Nonparametric - Use PLINK-like tricks

• Must contemplate power issues
 – Imaging power per sample surely higher than case/control outcome...
 – *But*, imaging sample sizes rarely approach those of case/control studies
 – Must be able to argue that power exists to find associations that survive the {brain} x {genome} search

• Genetic Modelling
 – Single locus method?
 – Running multi-locus method?
Conclusions

• Imaging Genetics
 – Mash-up of two large data, massive multiple testing problems

• Candidate SNP VBM
 – Need narrow primary outcome definition
 – But secondary outcomes, duly qualified, valuable for generating hypotheses

• Need more work on SNP selection, joint modelling/inference
Acknowledgements

• GlaxoSmithKline
 – Becky Inkster
 • Data QC, VBM Model fitting, gene selection,
 – Anil Rao, Brandon Whitcher
 • VBM Preprocessing
 – Peirandrea Muglia, Paul Matthews
 • Project management, data curation, gene selection

• External
 – Satoru Hayasaka, Wake Forest University
 • Nonstationary Cluster Inference Toolbox