SOLAR-Eclipse
a genetic imaging research tool

Kochunov Peter, PhD, DABMP
Maryland Psychiatric Research Center, University of Maryland
And
Texas Biomedical Research Institute
Overview

- Historical perspective
- Downloading and installing SOLAR-Eclipse
- Creating a solar analysis directory
 - pedigree files
 - Marker files
 - phenotype files
- Common analyses types
 - Univariate and bivariate analyses of variance, linkage and association
- Using Solar-Eclipse for Mega-and-Meta analyses
 - Additive Genetic Analyses (Heritability)
 - Analyses of fixed genetic factors (Association)
- Executing solar in parallel environment
SOLAR-Eclipse

- Extension of SOLAR for imaging genetic research
- Developed for multiplatform (pc/mac/linux)
 - Genetic analysis of discreet and continuous traits
 - Supports polygenic, quantitative trait and GWAS analyses in related and unrelated samples
 - Supports uni-and-multivariate analyses
 - Supports discrete and continuous covariates
- Implements functionality of three genetic tools
 - MENDEL, FISHER and SEARCH
MENDEL

• Intended for
 • Gene mapping calculation
 • QTL analyses
 • Pedigree segregation
 • Multipoint/Linkage Quantitative Trait mapping
 • Allele frequency estimation
 • Paternity testing
 • Genetic Counseling for disorders such as
 • Cystic Fibrosis
 • Duchenne Dystrophy and others
FISHER

- Genetic analysis of quantitative traits whose variability explained by:
 - polygenic inheritance
 - environmental forces

- Provided functions for additive genetic analysis of continuous polygenic traits:
 - Heritability
 - Genetic correlation
Use genetic likelihood calculations
 • Variability in trait is considered to be multivariate normal
 • Multivariate and univariate analyses are supported
 • Proband corrections and robust outlier detection is implemented

Use maximum-likelihood estimation (MLE) called SEARCH
SEARCH algorithm

- The MLE engine for MENDEL/FISHER
- An optimization routine
 - Works within user-set bounds and limits
 - Maximizes a cost function
 - Samples a function over a grid
 - Implemented the least square and use-defined estimators
- John has optimized it for discrete traits “OPTIMA”
What is SOLAR-Eclipse?

NIFTI input

TCL interpreter

SOLAR-Eclipse (C++/tcl) → NIFTI output

C/C++ coded SEARCH/OPTIMA and parts of FISHER and MENDEL

All functions use TCL for high-order processing
Progress since last year?

- Polyclass functionality is now standard
 - Combined analysis of multiple pedigrees
 - Mega-and-meta analysis metrics
 - Additive genetic effect modeling
 - Per class and in a combined pedigree
 - Fixed genetic effect modeling
 - Per class and in a combined pedigree

- Improvements in file handling
Downloading and installation

- Available at http://www.nitrc.org/projects/se_linux/
- Installation is simple – untar
- Need to get software key/license
 - Email solar@txbiomedgenetics.org
 - One per user
- Website (WIP)
 - http://www.mdbrain.org/solareclipse/
 - Instruction videos, how-to’s, example files
 - Main solar manuals are at
 - http://solar.txbiomedgenetics.org/doc/
When you type “solar”

- TCL interpreter starts
- When you type a command like “polygenic”
 - TCL interpreter reads solar.tcl file
 - Codes all the popular functions such as polygenic
 - Executes “polygenic” function
 - Analyzes the arguments and existing global variables
 - Chooses among several analyses e.g. univariate vs. multivariate
 - Calls upon compiled work for computationally-intensive procedures
What is TCL and its role in Solar

- Tool Command Language
- Similar to shell scripts such as bash and sh
- All solar command are TCL functions
- You can examine/modify any command by
 - `showproc command`
 - `showproc command new_command.tcl`
 - It will create a copy of original TCL script in your directory
 - Open it with a text editor to see what it does
SOLAR working directory

- All projects are organized by “directory”
 - Solar reads the default files from the directory it is started from
 - Including pedigree and default phenotype files
- Directory should contain the pedigree file
 - The kinship matrix
 - Definition of the familial ties among the subjects
Coding the pedigree is Simple®

Make in excel and save as a csv file

- Mac users should save it in Windows’ CSV format

Pedigree file defines

- Subject ID
- IDs for Father and Mother, including founders
- Sex: 2 and 1 or M and F.
- Family ID
- Monozygotic twin label
- Class – used for mega-genetic analysis
Defining pedigree

- Each “active” subject has to have:
 - ID
 - Family id
 - Gender
 - Parent IDs, even if you don’t use parents
 - Even if the parents aren’t known
 - A label for being a twin

- Additional variables
 - Class- specifies that subjects belong to a different pedigrees
 - House – specifies household, to study enviromental effects
Example pedigree for QTIM twins

<table>
<thead>
<tr>
<th>ID</th>
<th>FA</th>
<th>MO</th>
<th>SEX</th>
<th>FAMID</th>
<th>MZTWIN</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLA8003201</td>
<td>UCLA8003204</td>
<td>UCLA8003203</td>
<td>2</td>
<td>UCLA80032</td>
<td>UCAL8003</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8003202</td>
<td>UCLA8003204</td>
<td>UCLA8003203</td>
<td>2</td>
<td>UCLA80032</td>
<td>UCAL8003</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8004101</td>
<td>UCLA8004104</td>
<td>UCLA8004103</td>
<td>2</td>
<td>UCLA80041</td>
<td>UCAL8004</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8004102</td>
<td>UCLA8004104</td>
<td>UCLA8004103</td>
<td>2</td>
<td>UCLA80041</td>
<td>UCAL8004</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8005001</td>
<td>UCLA8005004</td>
<td>UCLA8005003</td>
<td>2</td>
<td>UCLA80050</td>
<td>UCAL8005</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8005002</td>
<td>UCLA8005004</td>
<td>UCLA8005003</td>
<td>2</td>
<td>UCLA80050</td>
<td>UCAL8005</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8018001</td>
<td>UCLA8018004</td>
<td>UCLA8018003</td>
<td>1</td>
<td>UCLA80180</td>
<td>UCAL8018</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8018002</td>
<td>UCLA8018004</td>
<td>UCLA8018003</td>
<td>1</td>
<td>UCLA80180</td>
<td>UCAL8018</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8033301</td>
<td>UCLA8033304</td>
<td>UCLA8033303</td>
<td>2</td>
<td>UCLA80333</td>
<td>UCAL8033</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8033302</td>
<td>UCLA8033304</td>
<td>UCLA8033303</td>
<td>2</td>
<td>UCLA80333</td>
<td>UCAL8033</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8041401</td>
<td>UCLA8041404</td>
<td>UCLA8041403</td>
<td>2</td>
<td>UCLA80414</td>
<td>UCAL8041</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8041402</td>
<td>UCLA8041404</td>
<td>UCLA8041403</td>
<td>2</td>
<td>UCLA80414</td>
<td>UCAL8041</td>
<td>1</td>
</tr>
<tr>
<td>UCLA8004104</td>
<td></td>
<td></td>
<td>1</td>
<td>UCLA80041</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA8004103</td>
<td></td>
<td></td>
<td>2</td>
<td>UCLA80041</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA8003304</td>
<td></td>
<td></td>
<td>1</td>
<td>UCLA80033</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA8003303</td>
<td></td>
<td></td>
<td>2</td>
<td>UCLA80033</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA8003204</td>
<td></td>
<td></td>
<td>1</td>
<td>UCLA80032</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA8003203</td>
<td></td>
<td></td>
<td>2</td>
<td>UCLA80032</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA2182904</td>
<td></td>
<td></td>
<td>1</td>
<td>UCLA21829</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UCLA2182903</td>
<td></td>
<td></td>
<td>2</td>
<td>UCLA21829</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Reading in the csv pedigree file

Starting Solar

Checking that the cvs pedigree is there

Loading pedigree

A successfully loaded pedi should have all these files created in the directory
Import of existing pedigrees

- Use Pedsys
 (http://pedsys.txbiomedgenetics.org)

- To import from other packages
 - S.A.G.E.
 - REGC
 - CRI-MAP
 - PAP
 - IBDMAT and others

- More information
Creating a SNP file

- SOLAR uses a simple marker format.
 - CSV file with a header
 - ID/EGO column is used to define subject ids
- It would look like
 - ID, rs429358, rs839523, rs1799945
 - PF0132, 1, 2, 1
 - PF0133, 2,2,2
 - PF0134,1,2,2
Reading PLINK genotype files

- Work-in-progress
- Will only work with “dose” files
 - Minor allele is coded as 0 (0, 1, 2) or fractional values
- Have a converter – contact me
- ENIGMA offers SNP extractor scripts that will create genotype files from a list of snps.
Creating phenotype files

- SOLAR phenotype files are in CSV format
- Header includes either ID or EGO
 - Identifiers for ID field
- Typical file for a continuous trait is
 - ID, Age, Sex, Gmthickness, FA, FLAIR
 - PH0001, 25, M, 2.5, 0.56, 1.193
 - PH0002, 39, F, 2.34, 0.49, 2.141
Phenotypes to incorporate imaging data

- The CSV header should identify the format of the trait using semicolon
 - GMdensity:NIFTI
 - GMthickness:GIFTI
 - Do we need support for other format?

- File name is provided for each subject
 - Semicolon can be used for volume identification in 4D file
An example of a phenotype file with binary traits

<table>
<thead>
<tr>
<th>mrid</th>
<th>id</th>
<th>age</th>
<th>sex</th>
<th>AverageFA</th>
<th>FA:NIFTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH0109</td>
<td>A32067</td>
<td>52</td>
<td>M</td>
<td>3420</td>
<td>gobs_fa.nii.gz:1</td>
</tr>
<tr>
<td>EH0110</td>
<td>A32195</td>
<td>61</td>
<td>F</td>
<td>4318</td>
<td>gobs_fa.nii.gz:2</td>
</tr>
<tr>
<td>EH0111</td>
<td>A01685</td>
<td>51</td>
<td>F</td>
<td>4331</td>
<td>gobs_fa.nii.gz:3</td>
</tr>
<tr>
<td>EH0112</td>
<td>A11124</td>
<td>39</td>
<td>M</td>
<td>4174</td>
<td>gobs_fa.nii.gz:4</td>
</tr>
<tr>
<td>EH0116</td>
<td>A32020</td>
<td>62</td>
<td>M</td>
<td>4139</td>
<td>gobs_fa.nii.gz:5</td>
</tr>
<tr>
<td>EH0117</td>
<td>A32021</td>
<td>61</td>
<td>F</td>
<td>4386</td>
<td>gobs_fa.nii.gz:6</td>
</tr>
<tr>
<td>EH0118</td>
<td>A32098</td>
<td>37</td>
<td>F</td>
<td>4354</td>
<td>gobs_fa.nii.gz:7</td>
</tr>
</tbody>
</table>
Performing processing on individual voxels

- Specific voxel(s) need to be defined before processing
- Individual voxels can be defined as
 - voxel X:Y:Z
 - solar> help voxel
 Purpose: To set and save current voxel position

Usage: voxel [<voxel-value>]

<voxel-value> is 3 coordinates delimited by colons as x:y:z for example, 12:8:23

If no voxel-value is specified, the current voxel is returned. If no current voxel has been defined, an error is raised. If a voxel has been defined, it is written to model files. The current voxel can also be set with the mask command, and that is the general way it should be done.
Performing processing on set of voxels

- Mask command defines the set of voxels of the same intensity
- solar> help mask
 Purpose: To read image mask file and set current voxel

Usage: mask [<filename>] [-intensity <intensity>] [-index <index>]
 mask -next
 mask -delete

<filename> is the name of the file containing the mask
<intensity> is the integer value that defines this mask
<index> is position within the set of mask-defined voxels
-next specifies to advance to the next mask-defined voxel
-delete deletes the mask and frees all related storage
Defining output (WIP)

- Imaging trait analysis can be saved into nifti multi-volume file

outputvolume [<filename>]
- Copies header information from the trait file
- Processing of each voxel is stored in the corresponding coordinate space
 - [0] – heritability
 - [1] – standard error
 - [2] – probability
 - [3] - % variance explained by covariates
- Similar format will be used for the genetic correlation
Executing it in a parallel environment

- Masking for simplified sge-execution
- Use a mask to parcelate space
- Save outputs in different files
- Submit them as separate jobs
- Add files for the final result!
Mega-and-Meta genetic analyses

- SOLAR engine is flexible and powerful
 - Works with pedigrees of random length and complexity
 - Families
 - Twins
 - Unrelated
 - Separate pedigrees can be combined at raw-data state
 - Merge small populations into a synthetic pedigree
 - Perform genetic analysis as if working in large extended families.
Advantages Mega vs. Meta genetic analysis

Advantages of Mega-genetic analysis:
- More “powerful” than meta-analysis
- Test of significance is performed on higher degree of freedoms
- Smaller samples can be combined into a single set
- Less weighted by discrepancies in subject numbers and less affected by variance in standard deviation among cohorts
- Can be used for testing heterogeneity of genetic effects

Advantages of Meta-genetic analysis:
- Easier to perform and is more accepted
- “Synthetic” heritability and fixed effects may not be well defined due to population differences
How does one proceed?

- Pedigrees are merged with “class” field
 - Class defines all subjects belonging to the same group
 - Sporadic model is fit separately for each “class”
 - Individual datasets are inverse-Gaussian normalized
 - Combine data by ensuring equal distribution and variance of the trait
 - Several polygenic tests are performed
 - Test of significance for each pedigree
 - Cross-wise test of difference in genetic effects for each pedigree
 - Test of significance for a combined pedigree
Polyclass modeling function

- Polyclass function will model additive and fixed genetic effects across pedigree
 - It performed per-pedigree modeling of genetic effect
 - Useful for meta-analysis and analysis of site-specific effects
 - Performs combined modeling of genetic effect
 - Statistical power of discovery is greatly improved
 - Genetic effects are “generalized” across cohorts
Example: mega-association analysis

- To perform association analysis across more than one cohort (pedigree)
- This example uses 4 cohorts
 - GOBS (N=800) <- families
 - QTIM (N=600) <- twins
 - NIDA-IRP (N=400) <- unrelated
 - TOAS (N=300) <- twins and siblings.
Mega-genetic analysis is simple

- polyclass 0-3 – maxsnp rs6675281 – intrait
 - This will model association between the trait and rs6675281
 - separately in classes 0, 1, 2, 3
 - -intrait option will use inverse Gaussian for trait normalization
The analysis: FA values (raw)
Sporadic model is fit per cohort

Regression of age, gender and ethnicity effects separately per cohort
Inverse normalization performed per cohort.
Per-sample association analysis

GOBS MAF=10%

Variance explained=0.1%

N=1

QTIM MAF=17%

Variance explained=0.8%

N=13

TAOS MAF=20%

Variance explained=0.1%

N=2

NIDA MAF=30%

Variance explained=0.7%

N=12
Mega-genetic analysis is simple

- polyclass 0-3 – maxsnp rs6675281 – intrait –comb
 - This will model association between the trait and rs6675281
 - separately in classes 0, 1, 2, 3
 - -intrait option will use inverse Gaussian for trait normalization
 - –comb will provide for mega-analysis
All three preceding steps are performed

- Populations are combined into a super pedigree
DISC1 rs6675281 polymorphism

Whole-sample mega-genetic (N=2285) analysis

Total variance explained in average FA values = 0.2% (p=0.002)
Downloading solar-eclipse

- We are always in need of few brave souls/testers
 - Stability should improve in the next six month
- Best to contact me to discuss the project
 - pkochunov@gmail.com
Next year’s workshop

- Discussion of new SE features
 - Performance and memory optimization strategies
- Voxel-wise, mega-GWAS of fixed effects in Enigma-DTI (>5,000 subjects)
- Better multiple comparison corrections
 - Collaboration with Tom Nichols.
- Integration of SE with image analyses pipelines
 - Collaborative work with Bennett Landman
Acknowledgements

Collaborative effort of

- John Blangero
- Charles Peters
- David Glahn
- Tom Nichols
- Bennett Landman
- Neda Jahanshad
- Paul Thompson

Supported by EB015611, P01HL045522, R37MH059490, R01MH078111, R01MH0708143 and R01MH083824